

The Time has Come for Refractory Sustainability

Ruth Engel
Refractory Consulting Services
+1 (513) 378-0190

Topics to be Covered

- Definition
- Consumption/markets
- Circular economy
- Greenhouse gasses
- Raw materials
- Mining
- Waste management: recycling, re-application

NOT presented: water use, transportation, social impact

For the refractory industry to truly achieve sustainability on a large scale, manufacturers need a more comprehensive way of measuring their environmental impact.

("Why Refractory Manufacturers Should Embrace Sustainability and See Net Zero as an Opportunity", July, 2022,
www.worldrefractories.org)

Ruth Engel

3

Definition

- UN defined **sustainability** as “meeting the needs of the present without compromising the ability of future generations to meet their own needs.” (Brundtland Commission, 1987)
- **Sustainability** is the practice of using natural resources responsibly today, so they are available for future generations tomorrow. (National Geographic, 2022)

Ruth Engel

4

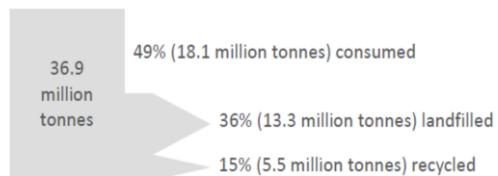
For Refractories this Means....

- 1) Lowering the emissions (carbon and others) from raw material mining → transportation → manufacturing → product use/reuse → burial: circular economy / life cycle analysis
- 2) Lowering the energy requirement from mining production → bringing into use → finding a new home: circular economy
- 3) Develop new products to better address the user's requirements: lower consumption / eco-design
- 4) Ensure water consumption/contamination is minimized throughout the life cycle: lower consumption

Ruth Engel

5

Cont'd

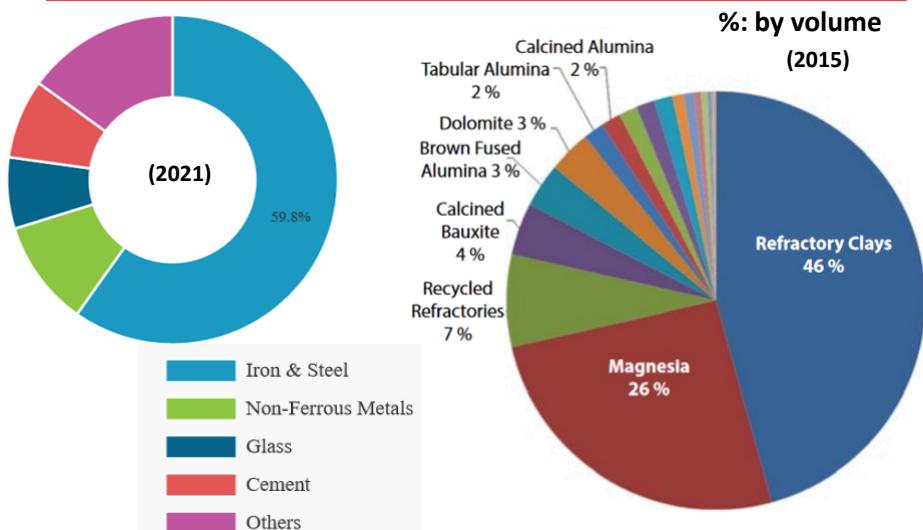

- 5) Modify mining & refractory manufacturing steps to lower waste: circular economy / eco-design
- 6) Develop new applications or new products for used refractories / by-products: recycling / circular economy
- 7) Consider the user's process to improve refractory life: lower consumption
- 8) Other

Ruth Engel

6

Refractories: Some Numbers

- 36.9 million tonnes produced in 2014, about 2/3 in China (in 2025 expected to reach 52.4 million tons*¹⁸)
- The steel industry uses about 60-75% of ALL refractories
- Every year almost 20 million tonnes of refractory waste are produced



"Life cycle assessment of refractory waste management in a Spanish steel works", I. Muñoz, LCA consultants, 2020

Ruth Engel

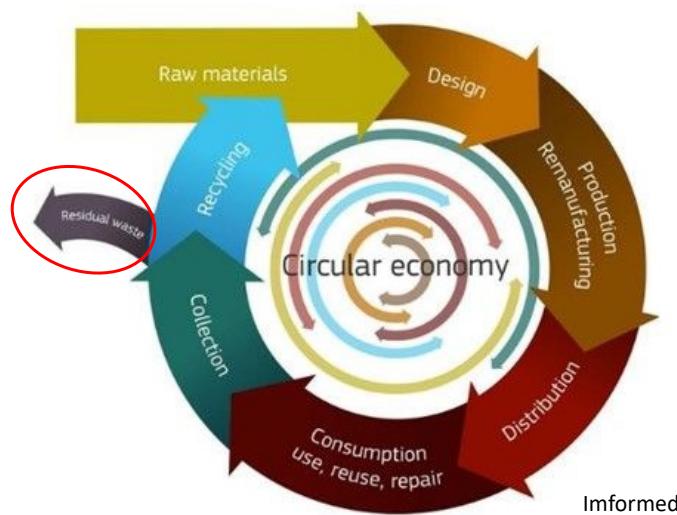
7

Global Market Share²¹ & Consumption⁶

Refractory “Waste” Management*²

Non valorisation

Valorisation

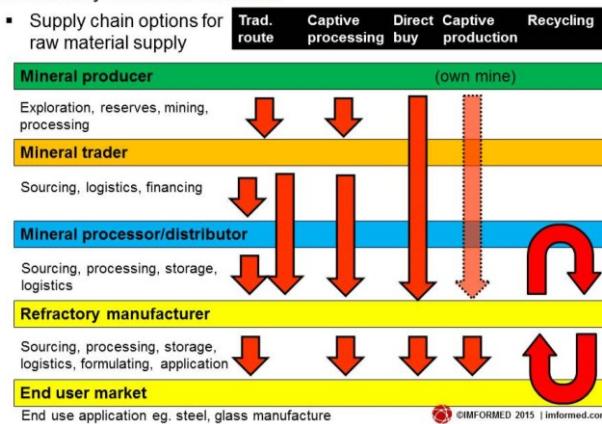


Source: Aintzane Soto (2021)

Ruth Engel

9

Circular Economy for Refractories

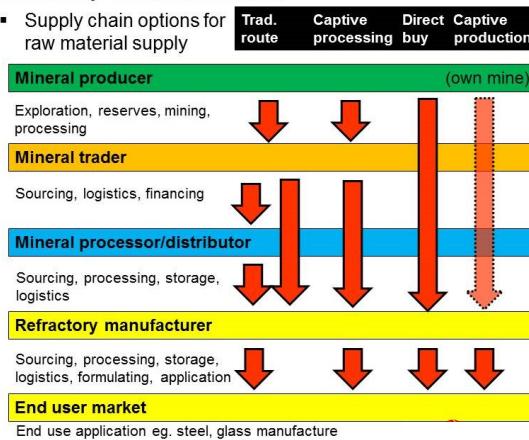

Ruth Engel

10

Raw Materials: Supply Chain Options

Refractory minerals overview

- Supply chain options for raw material supply


UNITECR 2015

11

Raw Materials: Supply Chain Options

Refractory minerals overview

- Supply chain options for raw material supply

Ruth Engel

12

Greenhouse Gases

Gases in the Earth's atmosphere that trap heat.

Main ones are:

- Water vapor (H₂O)
- Carbon dioxide (CO₂)
- Methane (CH₄)
- Ozone (O₃)
- Nitrous oxide (N₂O)
- Chlorofluorocarbons (CFCs)

Ruth Engel

13

Carbon Management Technologies

Several technologies under development for decarbonization
(required to achieve zero emissions)

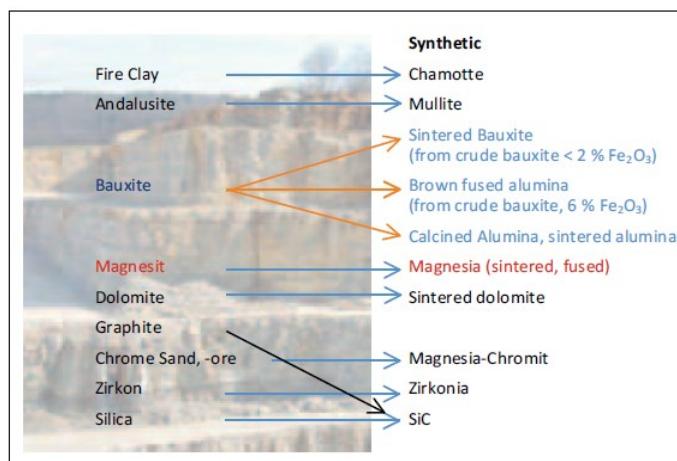
Reuse: injection of captured CO₂ into fresh concrete during manufacturing; reacts with the cement to form a carbonate (mineral) that strengthens the concrete*²²

Sequestration: CO₂ is dissolved in water which is injected into the subsurface. There it reacts with porous basalt rock. In less than two years, the CO₂ forms solid carbonate minerals*²³

Ruth Engel

14

Raw Materials: Sources


- Natural: mined, generally somewhat modified prior to use, ex. magnesite to magnesia
- Manufactured: mined, greatly modified, ex. fused magnesia-chrome, white or brown fused alumina

Mining: responsible for 4 to 7% of greenhouse gas emissions*¹⁰

Ruth Engel

15

Main Raw Materials

Bauxite Tailings Treatment*¹⁴

- Reworking the tailings
 - Increases deposit's lifetime
 - Adds product capacity
 - Reduces discharge
- Case study showed:
 - Al₂O₃ improvement from 50.0% to 72.3%
 - SiO₂ reduction from 12.1% to 4.4%

Ruth Engel

17

ECO2 Magnesia (Quebec, Canada)

Production based on offering a "second life" to currently discarded and unused waste materials by "decontamination of mine tailings" www.eco2-magnesia.com/index.html

Technology uses mine tailings, water & CO₂ to "extract" MgO
Product: up to 99% pure MgO

Has build a demonstration plant; hopes to have a plant in operation (2025)

Ruth Engel

18

Other Re-application of Mine Tailings

- **Cr ore tailings** treated for PGM (platinum, rhodium, palladium, etc.) recovery with 10 plants in operation or under construction (2011)
- Economically proven using standard equipment

(www.miningreview.com/top-stories/treating-chrome-tailings-for-pgms/, visited Jan. 2023)

Ruth Engel

19

The 3Rs of “Waste” Management

Refractory strategies to achieve the 3Rs:

reduce the amount of refractories used

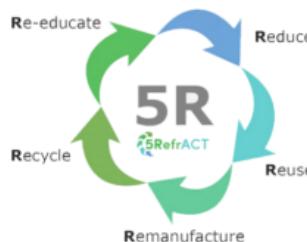
reuse of raw materials

recycle the spent refractories

Ruth Engel

20

The 4Rs



"Best Practices in Refractory Waste Management", A. Soto, M.A. Mangas, D. Maza, 5RefrACT

21

The 5Rs

According to the 5 R's, four actions should be taken before reaching 'recycling': **refuse/reject** (waste), **reduce** (consumption), **reuse**, **repurpose/repair**, and **only then recycle**.

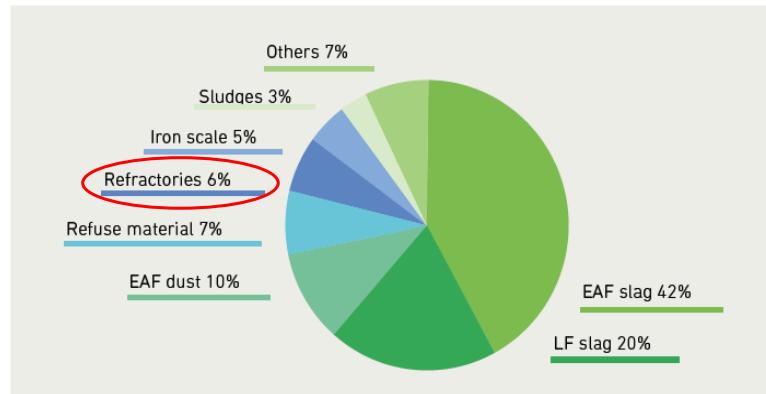
and the Rs continue coming.....6, 7,....

What is being done with refractories!

Ruth Engel

23

Life 5ReFRACT Project: Purpose

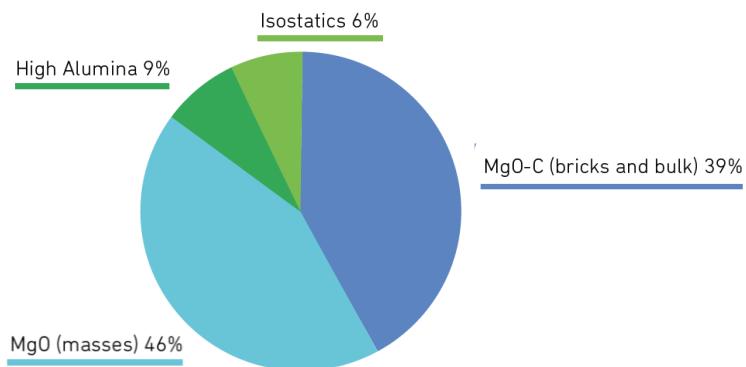

- Extend the “4R” approach to “5R”: reduce-reuse-remanufacture-recycle-re-educate
- Apply this to the steel sector and refractory’s market
- Duration: July 1, 2018 to Sept. 30, 2020; location: Sidenor
(Basque Country, Spain)
- **Documented their results**

[\(www.life5refract.eu/en/\)](http://www.life5refract.eu/en/), visited Febr. 2021)

Ruth Engel

24

Waste Distribution in a Steel Mill (EAF)



"Best Practices in Refractory Waste Management", A. Soto, M.A. Mangas, D. Maza, Sidenor, 5RefrACT

Ruth Engel

25

Recoverable Refr. Waste Distribution (2018)

"Best Practices in Refractory Waste Management", A. Soto, M.A. Mangas, D. Maza, Sidenor, 5RefrACT

Ruth Engel

26

Re-Use: Electric Arc Furnace (EAF)

Install used MgO-C brick as a wall in front off new brick:

Reduce the thickness of the new brick

Improve flow of steel at tap time

DOES NOT REQUIRE TOTAL SLAG REMOVAL

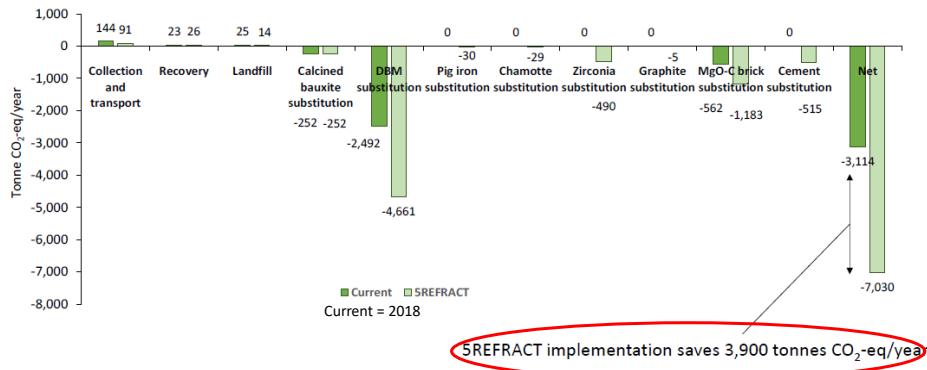
Detail of prewall using recycled brick

"Best Practices in Refractory Waste Management", A. Soto, M.A. Mangas, D. Maza, Sidenor, 5RefrACT

Ruth Engel

27

New Product Using “Refractory Waste”

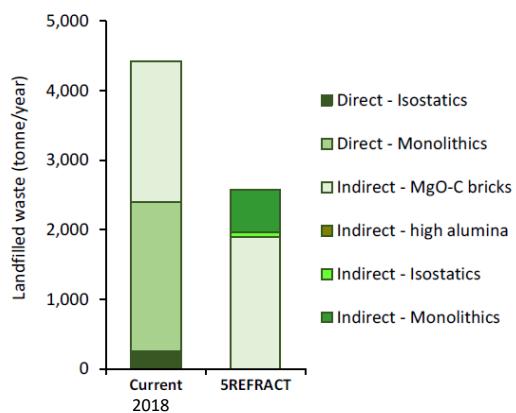


"Layman's Report", 5RefrACT

Ruth Engel

28

Greenhouse Gas Emissions per Year


"Life cycle assessment of refractory waste management in a Spanish steel works", I. Muñoz, LCA consultants, 2020

Ruth Engel

29

5reFRACT Program Saved:

28 TJ/year primary energy from fossil sources
1,800 tonnes of waste from going to landfill

"Life cycle assessment of refractory waste management in a Spanish steel works", I. Muñoz, LCA consultants, 2020

Ruth Engel

30

CESAREF

Concerted European Action on Sustainable Applications of REFractories:

Efficient use of raw materials and recycling

Microstructure design for increased sustainability

Anticipation of hydrogen steelmaking

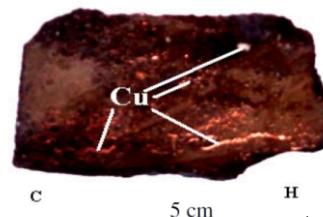
Energy efficiency and durability

Kick off meeting: February, 2023

(NOTE: this is for **steel** and it assumes “breakthrough technologies will be achieved through the use of **Hydrogen**”)

Ruth Engel

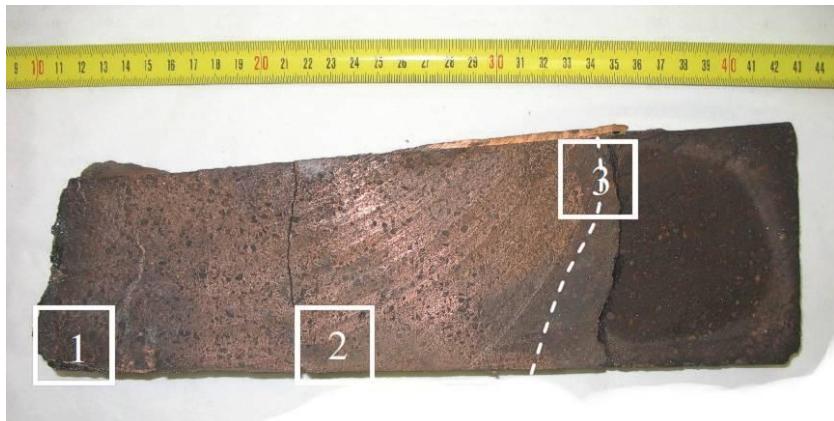
31


Metals Recovery from Spent Refr.

Mag-chrome bricks used to produce: Fe-alloys, Cu, PGM, Pb and others

Crush and

1.- recover, often through leaching, Cu, Ag, Pb, Bi, Sb, Au and other valuable metals which have penetrated into the brick's porosity and cracks


2.- reduce the Cr oxide to metallic

Ruth Engel

32

Used MgO-Cr₂O₃ Brick

Matte and slag: deeply penetrated into the brick, J. Rigby, linkedin, 2022

Ruth Engel

33

For Recycling

- Removal of “contaminated” material
- Sorting of incoming material: refractories are highly heterogenous and arrive as mixed materials

The product can then be used in or added to

Production of new refractories

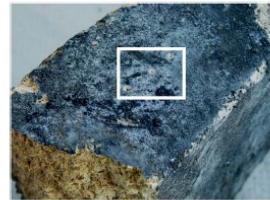
Additives to a process (slag/dross modifier, addition to cement, etc.)

Incorporated into new, non-refractory, product(s)

During manufacture, unused refractories are routinely added back into the mix

Ruth Engel

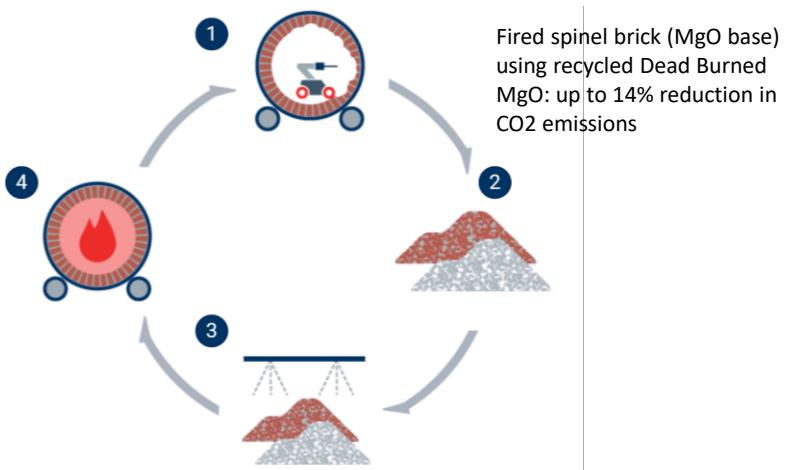
34


Refractory Sorting - LIBS

Demonstrator*⁴

Concept proven in 2016 by sorting 30 tonnes of mixed bricks; analyzed oxides were CaO, MgO, SiO₂, Fe₂O₃, Al₂O₃. *³

Ruth Engel



Measurement spots: through altered layer*¹²

Detail view of the “crater”, Diameter appr. 300 μm*¹²₃₅

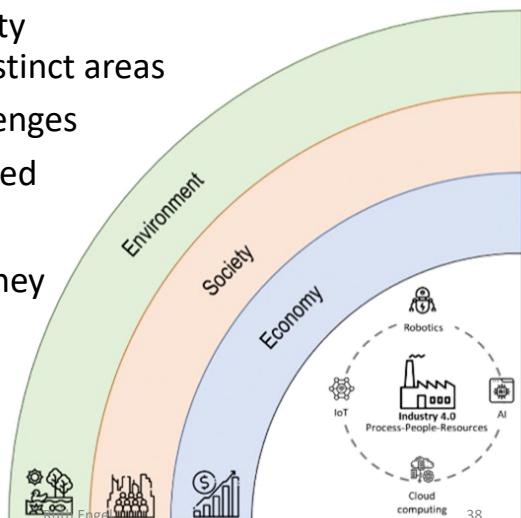
Spinel Brick

Added to New Refractories

Tempered MgO-C bricks produced with Al_4C_3 - containing secondary raw materials*8

Expected, but **not always** a problem

37


Conclusions

- Refractory sustainability encompasses many distinct areas
- Each has its own challenges
- All need to be addressed

It will be an exiting journey

THANK YOU!

Sustainability related concepts in circular economy and industry 4.0 context*9

38

References

- *1 "Global Carbon Budget 2022", P. Friedlingstein et al., *Earth Syst. Data*, 2022
- *2 "Requirements for implementing Circular Economy in the refractory waste management of a steel plant", A. Soto, M.A. Mangas, D. Maza, Imformed, Mineral Recycling Forum, 2021
- *3 "LIBS analyses for industrial applications – an overview of developments from 2014 to 2018". R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, V. Sturm, *J. Anal. At. Spectrom.*, 2018
- *4 "Review of Element Analysis of Industrial Materials by In-Line Laser-Induced Breakdown Spectroscopy (LIBS)", J.D. Pedarnig, et al., *Appl. Sci.*, 2021
- *5 "Recycled Refractory Materials : Ambitions with a Future?", *Interceram Review*, 2020
- *6 "Industrial Waste Resources Will Become the New Normal", interview with Mike O'Dricoll, *Refractories Manual*, 2020
- *7 "Recycling refractories: entering a new era", Imformed, 2016
- *8 "Innovative Aluminium Carbide Detection and Treatment Technologies to Increase Magnesia-carbon Recycling", S. Heid, A. Leitner, S. Knogshofer, *The J. of Refrac. Innovations Bulletin*, 2022

References

- *9 "Theorizing the Principles of Sustainable Production in the context of Circular Economy and Industry 4.0", E. Viles, F. Kalemkerian, J. A. Garza-Reyes, J. Antony, J. Santos, *Sustainable Product. & Consumption*, 2022
- *10 "Climate risk and decarbonization: What every mining CEO needs to know", L. Delevigne, W. Glazener, L. Gregoir, K. Henderson, *McKinsey & Co*, 2020
- *11 "Supply and Demand of High Alumina Raw Materials for Refractories in Europe", A. Buhr, O. Koegel, J. Dutton, *RWF*, 2013
- *12 "LIBS analyses for industrial applications – an overview of developments from 2014 to 2018", R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, V. Sturm, *JAAS*, 2018
- *13 "Laser Induced Breakdown Spectroscopy (LIBS) in recycling of refractory material outbreak", J-U. Gunther, C. Schilder, A. Feierabend, C. Bohling, *Mineral Recycling Forum*, 2016
- *14 "Bauxite Tailings Valorization: From Test Works to Industrial Scale Up", T. Baumann, *Mineral Recycling Forum* 2022
- *15 "Recovering CO₂ and H₂O from waste streams", M. Rameshni, S. Santo, *Decarb. Tech.*, 2022
- *16 "Zero Waste: A Sustainable Approach for Waste Management", S. Hamid, B.M. Skinder, M.A. Bhat, *Innovative Waste Management Technologies for Sustainable Development*, 2020

References

- *17 "Study of spent refractory waste recycling from metal manufacturers in Missouri", H. Fang, J.D. Smith, K.D. Peaslee, Resources, Conservation and Recycling, 1999
- *18 <https://pmarketresearch.com/in-2025-global-production-of-refractory-is-estimated-at-52-362-million-tons/>, visited Febr. 2023
- *19 "Life Cycle Assessment and Life Cycle Cost Analysis of Magnesia Spinel Brick Production", A. Ozkan, Z. Gunkaya, G. Tok, L. Karacasulu, M. Metesoy, M. Banar, A. Kara, Sustainability, 2016
- *20 "Magnesita: A look back at the Industry & Pathway forward for a healthy successful year", April 27, 2015
- *21 www.fortunebusinessinsights.com/refractories-market-103287, visited Febr. 2023
- *22 CarbonCure, visited Febr. 2023
- *23 Carbfix.com, visited Febr. 2023
- *24 "Degradation Mechanisms of Copper Anode Furnace Refractory Linings", V. Petkov, thesis, 2007